skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Loy, J M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. AI-based frameworks for protein engineering use self-supervised learning (SSL) to obtain representations for downstream biological predictions. The most common training objective for these methods is wildtype accuracy: given a sequence or structure where a wildtype residue has been masked, predict the missing amino acid. Wildtype accuracy, however, does not align with the primary goal of protein engineering, which is to suggest a {\em mutation} rather than to identify what already appears in nature. Here we present Evolutionary Ranking (EvoRank), a training objective that incorporates evolutionary information derived from multiple sequence alignments (MSAs) to learn more diverse protein representations. EvoRank corresponds to ranking amino-acid likelihoods in the probability distribution induced by an MSA. This objective forces models to learn the underlying evolutionary dynamics of a protein. Across a variety of phenotypes and datasets, we demonstrate that EvoRank leads to dramatic improvements in zero-shot performance and can compete with models fine-tuned on experimental data. This is particularly important in protein engineering, where it is expensive to obtain data for fine-tuning. 
    more » « less